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Abstract
We study the pointwise behaviour of the Fourier transform of the spectral
measure for discrete one-dimensional Schrödinger operators with unbounded
sparse potentials, particularly with the potentials of the special type, which give
rise to the spectra with Hausdorff dimensionality between 1/2 and 1. Operators
with bounded sparse potentials are also considered.
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1. Introduction

Let H be a Schrödinger operator acting on a Hilbert space H. We can think of H as an
energy Hamiltonian of a quantum-mechanical system. Denote by ψ the initial state of such
a system. Then the time evolution of the state ψ(t) is given by ψ(t) = e−itHψ . One
important dynamical property of the system is the probability of finding the system again
in the state ψ at time t, which is given by |〈ψ,ψ(t)〉|2 = |〈ψ, e−itH ψ〉|2. The question of
special interest is whether this probability goes to zero for large |t|. Such scattering is a typical
feature of systems with absolute continuous spectra, which is easy to show using the spectral
resolution of the operator H. For this denote by ρψ the spectral measure of ψ . Then we
have the representation 〈ψ, e−itHψ〉 = ∫

e−itx dρψ(x) = ρ̂ψ(t) (which is exactly the Fourier
transform of the spectral measure ρψ ) and we can therefore reduce our discussion to the study
of the asymptotic behaviour of ρ̂ψ(t) at infinity, particularly, the above-mentioned question is
equivalent to the question whether the following relation holds:

lim
t→±∞ ρ̂ψ (t) = 0. (1)

(Measures for which (1) holds are called Rajchman measures. For more information about
these measures, see [4, 6].)
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This last question is especially easy to answer if the measure under consideration is an
absolutely continuous measure or a point measure. The answer is positive in the first case
(by the Riemann–Lebesgue lemma), in particular, the systems with the absolute continuous
spectra have the spreading property 〈ψ,ψ(t)〉 → 0. In the second case the answer is negative
(by Wiener’s theorem), telling us that bound states do not scatter. So the only complicated
(and therefore also interesting) case concerns the singular continuous part of a measure.

In this paper, we will study one specific model, for which the pointwise behaviour of ρ̂(t)
can be analysed completely, although the arising spectrum is singular continuous. Namely,
we will consider discrete one-dimensional Schrödinger operators on the ‘half line’ (that is on
�2(N)), which are defined by

(Hϕy)(n) = y(n− 1) + y(n + 1) + V (n)y(n)

(where 0 < ϕ < π) along with a phase boundary condition

y(0) sinϕ + y(1) cosϕ = 0

with sparse potentials, that is potentials of the form

V (l) =
{
vn l = xn

0 else

}
(2)

where 1 < x1 < x2 < · · · < xn < · · · is a rapidly increasing sequence.
To understand why the systems described by such operators can have the spreading

property ρ̂(t) → 0, let us consider the quasiclassical picture of quantum motion under the
influence of a sparse potential. We can think of a sparse potential as a sequence of the barriers,
which the particle has to meet starting at time t = 0 at the origin and moving to the right.
When the particle hits each barrier, it is either reflected or transmitted (with the corresponding
probabilities). In the case of reflection, the particle returns to the origin, while in the case of
transmission, it moves on to the next barrier, where it is again either transmitted or reflected.
So we see that ρ̂(t) (recall that |ρ̂(t)|2 is the probability of finding the particle again at n = 1
at time t if it was initially localized at n = 1) should have a resonance structure since return to
the origin is possible only at certain times. Because of the spreading of the wave packets, we
should not expect very sharp resonances. Moreover, if the potential is sufficiently sparse then
the spreading of the wave packets between the barriers should lead to the announced property
|ρ̂(t)| → 0.

That sparse potentials can lead to singular continuous spectra was first shown by Pearson
in [7] (for continuous Schrödinger operators). As for the case of discrete operators with
unbounded potentials, it was shown by Simon and Stolz in [9] that if xn grows sufficiently fast
then the spectrum in (−2, 2) is purely singular continuous.

Moreover, sparse potentials can be used to obtain Schrödinger operators with spectra with
exactly known Hausdorff dimensionality between 0 and 1, as the following theorem shows.

Theorem 1.1 (due to [1], [2]). Let δ ∈ (0, 1). Suppose a potential V is defined by (2), and
suppose the sequences (vn) and (xn) obey

vn = x
1−δ
2δ
n and lim

n→∞

∏n−1
k=1 xk

xεn
= 0 for all ε > 0. (3)

Then

(i) For every boundary phase ϕ, the spectrum of Hϕ consists of the closed interval [−2, 2]
(which is the essential spectrum σess(Hϕ)) along with some discrete point spectrum outside
this interval.
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(ii) For every ϕ, the Hausdorff dimensionality of the spectrum of Hϕ in (−2, 2) is bounded
between dimensions δ and 2δ

1+δ .

(iii) For Lebesgue a.e. ϕ, the spectrum in [−2, 2] is of exact dimension δ.

We will mainly consider in this paper one-dimensional discrete Schrödinger operators on
�2(N) under the same assumptions as in this theorem. We are only interested in the part of the
spectrum in (−2, 2), because of the relation σess(Hϕ) = [−2, 2]. So our aim is to investigate
the asymptotics of the Fourier transform of the spectral measure for Schrödinger operators
in the situation, where it is not only known that their (essential) spectra are purely singular
continuous, but where the exact Hausdorff dimensionality of these spectra is also known. (For
other results on the relationship between asymptotics of ρ̂(t) and the continuity properties of
ρ with respect to Hausdorff measures, see [5].)

The actual value ϕ from the definition of the operator Hϕ will not be significant, and all
results of this paper are valid for any value ϕ. Therefore we usually omit the index ϕ and write
H instead of Hϕ .

Let ρ be the spectral measure associated with the vector δ1 ∈ �2 (δ1(1) = 1 and δ1(n) = 0
if n �= 1), that is ρ(M) = ‖E(M)δ1‖2, whereE(·) is the spectral resolution of H. Since δ1 is a
cyclic vector for H, any other spectral measure ρψ is absolutely continuous with respect to ρ.
We can therefore restrict our further consideration to this particular measure.

We will prove the following theorem:

Theorem 1.2. Let a potentialV have the form (2) and let the sequences (xn) and (vn) obey (3).
Then:

(i) For every δ ∈ ( 4
5 , 1
)
, f ∈ C∞

0 (−2, 2) and every σ > 0, there exists a constant C such
that

|(f dρ)̂(t)| � C|t|− 5
4 + 1

δ
+σ

for all t with |t| > 1.

(ii) For every δ ∈ ( 2
3 , 1
)
, σ > 0 and every f ∈ C∞

0 (−2, 2) with 0 /∈ suppf , there exists a
constant C such that

|(f dρ)̂(t)| � C|t|− 3
2 + 1

δ
+σ

for all t with |t| > 1.
(iii) Fix arbitrary ε > 0 and δ ∈ ( 1

2 , 1
)

and define the resonant set R by

R =
⋃
n∈N

[
1

2
xn, x

δ
2δ−1 +ε
n

]
.

Then for every m ∈ N and every f ∈ C∞
0 (−2, 2), there exist a constant C and t0 > 0

such that

|(f dρ)̂(t)| � C|t|−m

for all t with |t| /∈ R and |t| > t0.

Remark. This result does not actually require the exact relation vn = x
1−δ
2δ
n . It will be clear

from the proof that the precise condition on the sequence (vn) which we need is that (|vn|) is
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an unbounded monotonically increasing sequence, such that
∏j−1
r=1 |vr | � |vj |N holds for all

j with some N > 0 and vj � x
1−δ
2δ
j holds for all j . So our results concern a somewhat more

general situation than seems at the first moment.

From theorem 1.2 we see that ρ̂ has the announced resonance structure. We also see that
we have the best estimates for the values of δ near to 1, which has the following explanation:
the Hausdorff dimension can be seen as a ‘measure’ of singularity of the spectrum (note that
the Hausdorff dimension of the absolute continuous spectrum is equal to 1), so the better the
estimates the less ‘singular’ is the spectrum, that is for δ near to 1.

This paper is closely connected with the paper [4], where discrete one-dimensional
Schrödinger operators with bounded sparse potentials are considered. As an illustration of
this connection we note that in the limit δ → 1 the inequality from the last theorem (part (ii))
transforms into the inequality

|(f dρ)̂(t)| � C|t|− 1
2 +σ

which is the inequality proved in [4] in the case of a bounded potential for any f with
0 /∈ supp f .

We will also briefly discuss the case of a bounded potential at the end of this paper
and obtain in the last section as a byproduct of the whole consideration the following
theorem:

Theorem 1.3. Let a potential V have the form (2) with the bounded sequence (vn) and let the
sequence (xn) obey

lim
n→∞

∏n−1
k=1 xk

xεn
= 0 for all ε > 0. (4)

Then for every f ∈ C∞
0 (−2, 2) and every σ > 0, there exists a constant C, such that

|(f dρ)̂(t)| � C|t|− 1
4 +σ

for all t with |t| > 1.

This theorem can be considered as some kind of a completion of results from [4], for this
theorem provides us with the general estimate for (f dρ)̂(t) for arbitrary f , whereas in
[4] only the corresponding formula for f with 0 /∈ suppf is proved (we have, however,
to note here that our assumptions on the growth of xn are much stronger than those
from [4]).

Our approach to prove theorems 1.2 and 1.3 depends on a representation of the Fourier
transform of the spectral measure as a series of integrals (theorem 2.2). We describe our
strategy of estimating the integrals from this series in section 5.

From now on and in the rest of this paper (with the exception of section 9), we assume
that the potential is given by (2) and (3) (if nothing else is stated).

2. Preliminaries

We collect in this section some results that we will use in the sequel. First, we will use an
EFGP transformation (also called a Prüfer transformation) to rewrite the discrete Schrödinger
equation

y(n− 1) + y(n + 1) + V (n)y(n) = Ey(n) (n ∈ N). (5)
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So, suppose that E ∈ (−2, 2) and let y be some solution of (5). Write E = 2 cos x with
x ∈ (0, π) and define R(n) > 0, θ(n) by(

u(n)− u(n− 1) cos x
u(n− 1) sin x

)
= R(n)

(
cos(θ(n))
sin(θ(n))

)
.

Then R and θ obey the equations (see [3])

R(n + 1)2

R(n)2
= 1 − V (n)

sin x
sin(2θ(n) + 2x) +

V (n)2

sin2 x
sin2(θ(n) + x) (6)

cot(θ(n + 1)) = cot(θ(n) + x)− V (n)

sin x
. (7)

It is evident that for all l from {xn + 1, . . . , xn+1}, n ∈ N, holds: R(l) = R(xn + 1) and
θ(l) = θ(xn + 1) + x(l − xn − 1). We further denote θ(n) + x with θ̄ (n), θ(xr) with θr and
θ̄ (xr) with θ̄ r .

As a second tool, we need a representation (from [4]) of the spectral measure as a weak
star limit of absolutely continuous measures. (This result is related to the similar result for the
continuous case from [8].) Let R(n, x) = R(n) correspond to the solution uϕ of (5) with the
initial values

uϕ(0, z) = cosϕ uϕ(1, z) = sinϕ.

Proposition 2.1 (due to [4]). Let f be a continuous function with the support contained in
(−2, 2). Then ∫ 2

−2
f (E) dρ(E) = 2

π
lim
n→∞

∫ π

0
f (2 cos x)

sin2 x

R2(n, x)
dx.

We can use proposition 2.1 to derive a series representation for the Fourier transform of ρ.
Since we are only interested in the part of the spectrum in (−2, 2), we will study

(f dρ)̂(t) =
∫ ∞

−∞
f (E) e−itE dρ(E)

with f ∈ C∞
0 (−2, 2).

Theorem 2.2. Let the coefficients Cαj (x) be defined by

Cαj (x) =
j∏
r=1

(
vr

vr + 2i(sgn(αr)) sin x

)|αr |
(8)

with α = (α1, . . . , αj ) from Z
j (sgn denotes here a sign). Let f be a continuous function with

the support contained in (−2, 2). Let a and b be defined by

a = inf{x ∈ (0, π) : 2 cos x ∈ supp (f )} b = sup{x ∈ (0, π) : 2 cos x ∈ supp (f )}.
Then there exists a function h(x) from C∞

0 (0, π) with the support contained in [a,b], such that
for any m � 1 holds

(f dρ)̂(t) =
∞∑

j=m+1

∑
{α∈Zj |αj �=0}

∫ b

a

h(x)Cαj (x) exp

(
i 2

(
−t cos(x) +

j∑
r=1

(αr θ̄ r )

))
dx

+
∑
α∈Zm

∫ b

a

h(x)Cαm(x) exp

(
i 2

(
−t cos(x) +

m∑
r=1

(αr θ̄ r )

))
dx. (9)
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Proof. From (2) (which ensures that V (l) = 0, if l �= xn) together with (6) we have the
representation

R−2(xj , k) = R−2(0, k)
j−1∏
r=1

(
1 − vr sin(2θ̄ r )

sin(x)
+
v2
r sin2(θ̄ r )

sin2(x)

)−1

. (10)

For any real u the function
(
1 − u sin x + u2 sin2 x

2

)−1
expands in a Fourier series(

1 − u sin x + u2 sin2 x

2

)−1
=

∞∑
n=−∞

(
u

u + 2i(sgn(n))

)|n|
einx. (11)

(This relation can be easily proved by summing the series on the right-hand side.) We use
formulae (10) and (11) and proposition 2.1 (where we take the limit with respect to the
subsequence xj ) to obtain

(f dρ)̂(t) = lim
j→+∞

∑
α∈Zj

∫ b

a

h(x)Cαj (x) exp

(
i 2

(
−t cos(x) +

j∑
r=1

(αr θ̄ r )

))
dx

where the function h is defined by h(x) = 2
π
R−2(0, x)f (2 cos x) sin2 x. Then (9) follows

from∑
α∈Zj

∫ b

a

h(x)Cαj (x) exp

(
i 2

(
−t cos(x) +

j∑
r=1

(αr θ̄ r )

))
dx

=
∑

{α∈Zj |αj �=0}

∫ b

a

h(x)Cαj (x) exp

(
i 2

(
−t cos(x) +

j∑
r=1

(αr θ̄ r )

))
dx

+
∑
α∈Zj−1

∫ b

a

h(x)Cαj−1(x) exp

(
i 2

(
−t cos(x) +

j−1∑
r=1

(αr θ̄ r )

))
dx

which is an easy corollary of C
(α1,...,αj−1,0)
j = C

(α1,...,αj−1)

j−1 . �

We will use formula (9) in the case m = m(t), wherem(t) is defined by the condition
xm(t)+1

2
� |t| < xm(t)+2

2
. (12)

Before we go on, we make some general remarks on the notation.

(i) The interval [a, b] from theorem 2.2 is from now on fixed. We denote a0 = infx∈[a,b] sin x
and use a0 further in this meaning.

(ii) The term ‘constant‘ will always refer to a positive number which is independent of t, j ,
x and of the αj . It may depend, however, on the other parameters of the problem, which
are the sequences (vn) and (xn) and the function f ∈ C∞

0 (−2, 2). It may also depend on
additional parameters we introduce such as the σ from theorem 1.2. Some constants will
have the same meaning throughout the paper (for example Ck from lemma 4.1 below)
or through a certain part of the paper (for example Gl from lemma 5.1 below). In the
last case we will always mention the change of this meaning. All other constants, whose
actual value may change from one formula to the next, are usually denoted by C. Also,
we sometimes write a � b instead of a � Cb.

(iii) We use the notation Z+ for the set {0, 1, 2, . . .}.
(iv) We always denote the derivative of u (w.r.t. x) of order b by u(b), that is u(b) = db

dxb u.
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3. Estimates on the derivatives of Cα
j (x)

The aim of this section is to prove the following lemma:

Lemma 3.1. Let the sequence (vn) of positive numbers converge monotonically to +∞.

Denote
√
v2
r +4a2

0

vr
by p0,r . Then there exists for each integer k � 0 a constant P̃ k, such that

for any j ∑
α∈Zj

sup
κ=0,...,k
x∈(a,b)

∣∣∣(Cαj (x))(κ)∣∣∣ � P̃ k

(ln(p0,j ))k

j∏
r=1

(
1 +

2√
p0,r − 1

)
. (13)

(We prove this lemma at the end of the section.)

We have for the coefficients Cαj (x) the representation

Cαj =
j∏
r=1

(
vr√

v2
r + 4a2

0

)|αr | j∏
r=1

 1
vr√
v2
r +4a2

0

+ 2i(sgn(αr )) sin x√
v2
r +4a2

0

|αr |

. (14)

We need therefore only to investigate the derivatives of

j∏
r=1

 1
vr√
v2
r +4a2

0

+ 2i(sgn(αr )) sin x√
v2
r +4a2

0

|αr |

.

We study for the moment a more general situation.

Lemma 3.2. Let w and s be the real numbers, such that w2 + 4s2a2
0 = 1 holds. Let m

be a non-negative integer. Then there exists for any non-negative integer p a constant C2,p,
independent of m, w and s, such that for k = 0, . . . , p holds the inequality

sup
x∈(a,b)

∣∣∣∣∣
((

1

w + 2is sin x

)m)(k)∣∣∣∣∣ � Ck2,pm
k.

Proof. It is easy to see that for each k there exists a constant C1,k , independent of w and s,
such that

sup
x∈(a,b)

∣∣∣∣∣
(

1

w + 2is sin x

)(k)∣∣∣∣∣ � C1,k (15)

holds, where for k = 0 we can set C1,0 = 1. We use further the common equality(
n∏
r=1

ur

)(k)
=

k∑
l1=0

· · ·
ln−2∑
ln−1=0

(
k

l1

)
. . .

(
ln−2

ln−1

)
u
(ln−1)

1 u
(ln−2−ln−1)

2 . . . u(k−l1)n (16)

and two formulae following from this equality

k∑
l1=0

l1∑
l2=0

· · ·
ln−2∑
ln−1=0

(
k

l1

)(
l1

l2

)
· · ·
(
ln−2

ln−1

)
= nk (17)

(with ur(x) = ex) and

k∑
l1=0

· · ·
ln−2∑
ln−1=0

(
k

l1

)
· · ·
(
ln−2

ln−1

)
m
ln−1

1 . . . mk−l1n =
(

n∑
r=1

mr

)k
(18)
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(with ur(x) = emrx). Then with ul(x) = 1
w+2is sin x for l = 1, . . . ,m, and

C2,p = max
l=1,...,p

C1,p

from (15)–(17) follow the estimates∣∣∣∣∣
((

1

w + 2is sin x

)m)(k)∣∣∣∣∣ �
k∑

l1=0

· · ·
lm−2∑
lm−1=0

(
k

l1

)
· · ·
(
lm−2

lm−1

) ∣∣∣u(lm−1)

1

∣∣∣ ∣∣∣u(lm−2−lm−1)

2

∣∣∣ · · · ∣∣∣u(k−l1)m

∣∣∣
�

k∑
l1=0

· · ·
lm−2∑
lm−1=0

(
k

l1

)
· · ·
(
lm−2

lm−1

)
C1,lm−1C1,lm−2−lm−1 · · ·C1,k−l1

� Ck2,p

k∑
l1=0

l1∑
l2=0

· · ·
lm−2∑
lm−1=0

(
k

l1

)(
l1

l2

)
· · ·
(
lm−2

lm−1

)
= Ck2,pm

k

where we have used the relations k = k − l1 + lm−1 +
∑m−2

j=1 (lm−j−1 − lm−j ) and C1,0 = 1.
�

Lemma 3.3. Let the real numbers wl and sl , l = 1, . . . , j , obey w2
l + 4s2

l a
2
0 = 1 for all l’s.

Let ml , l = 1, . . . , j , be any non-negative integers. Then there exists for each non-negative
integer p a constant C2,p, independent of wl , sl and ml , such that for all k = 0, . . . , p holds

sup
x∈(a,b)

∣∣∣∣∣∣
(

j∏
l=1

(
1

wl + 2isl sin x

)ml)(k)∣∣∣∣∣∣ � Ck2,p

(
j∑
l=1

ml

)k
.

Proof. We use formula (16) with ul = ( 1
wl+2isl sin x

)ml
, l = 1, . . . , j , to obtain, using the result

of lemma 3.2 and (18), the following estimates:

sup
x∈(a,b)

∣∣∣∣∣∣
(

j∏
l=1

(
1

wl + 2isl sin x

)ml)(k)∣∣∣∣∣∣
�

k∑
l1=0

. . .

lj−2∑
lj−1=0

(
k

l1

)
· · ·
(
lj−2

lj−1

)
sup
x∈(a,b)

∣∣∣u(lj−1−1)
1

∣∣∣ . . . sup
x∈(a,b)

∣∣∣u(k−l1)j

∣∣∣
�

k∑
l1=0

. . .

lj−2∑
lj−1=0

(
k

l1

)
· · ·
(
lj−2

lj−1

)
C
lj−1

2,lj−1
(m1)

lj−1 · · ·Ck−l12,k−l1 (mj)
k−l1

� Ck2,p

k∑
l1=0

. . .

lj−2∑
lj−1=0

(
k

l1

)
· · ·
(
lj−2

lj−1

)
(m1)

lj−1 · · · (mj)k−l1 = Ck2,p

(
j∑
l=1

ml

)k
.

�
Corollary 3.4. For all k = 0, . . . , p holds the inequality

sup
x∈(a,b)

 j∏
r=1

 1
vr√
v2
r +4a2

0

+ 2i(sgn(αr )) sin x√
v2
r +4a2

0

|αr |(k) � Ck2,p

(
j∑
r=1

|αr |
)k
.

From this last inequality and from the formula (14) follows the inequality

sup
κ=0,...,k
x∈(a,b)

∣∣∣(Cαj (x))(κ)∣∣∣ � Ck2,k

(∑j

r=1 |αr |
)k

∏j

r=1 p
|αr |
0,r

. (19)

We are now able to prove lemma 3.1.
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Proof of lemma 3.1. Denote
(

2k
e

)k
with C̃k. The function xk

ax
with a > 1 obeys supx�0

xk

ax
�

kk

ek(ln a)k . Therefore, for all positive integers n1 and all p > 1, nk1 � C̃k ln(p)−k(
√
p)n1 holds.

We have then for all positive integers j the following estimates:

∑
α∈Zj

( j∑
r=1

|αr |
)k

j∏
r=1

(
p

−|αr |
0,r

) �
∑
α∈Zj

( j∑
r=1

|αr |
)k
(
√
p0,j )

−
j∑
r=1

|αr | j∏
r=1

(
1√
p0,r

)|αr |


� C̃k

(ln(p0,j ))k

∑
α∈Zj

(
j∏
r=1

(
1√
p0,r

)|αr |
)

= C̃k

(ln(p0,j ))k

j∏
r=1

(
1 +

2√
p0,r − 1

)
.

Then (13) follows from (19) and from the last inequality with P̃ k = Ck2,kC̃k. �

Remark. In the case k = 0 inequality (13) holds with P̃ 0 = 1.

4. Estimates on the EFGP angles

In the following sections we will need some estimates on the derivatives of the EFGP angles θ̄n.
The corresponding estimates in the case of a bounded potential are contained in [4, 3] (in the
last paper only the estimates for the first two derivatives are proved). In the case under
consideration we prove the following lemma:

Lemma 4.1. Let vn and xn obey (2) and (3). Then there exist constants Cl, l = 0, 1, 2, . . . ,
such that the following inequalities hold:

sup
x∈(a,b)

|θ̄ (l)(xn + 1)| � Clx
l
n

(
v2
n + 4

)2l
n, l = 1, 2, . . .

sup
x∈(a,b)

∣∣∣ dθ̄ (xn)
dx − xn

∣∣∣ � C0xn−1v
4
n−1 n = 2, 3, . . . .

Proof. Because of θ̄ ′(xn) = θ ′(xn) + 1 we need only to prove the above estimates with θ̄ (xn)
replaced by θ(xn). We use the simple inequality

min
ϕ∈[0,2π ]

(1 − v sin 2ϕ + v2 sin2 ϕ) � (v2 + 4)−1 (20)

which can be proved by the methods of elementary calculus. We differentiate equation (7)
and solve for θ ′

n to obtain

θ ′(n + 1) = θ ′(n) + 1

1 − V (n)

sin x sin(2θ̄ (n)) + V (n)2

sin2 x
sin2(θ̄ (n))

− cos x sin2(θ̄(n))V (n)

sin2 x
(

1 − V (n)

sin x sin(2θ̄ (n)) + V (n)2

sin2 x
sin2(θ̄ (n))

) . (21)

From this and (2) follows

θ ′(xn+1) = θ ′(xn + 1) + xn+1 − xn − 1 θ(l)(xn+1) = θ(l)(xn + 1) l � 2. (22)

Using (20) we then obtain from (21) the inequality

|θ ′(xn + 1)| � |θ ′
n + 1|

(
v2
n

a2
0

+ 4

)
+
vn

(
v2
n

a2
0

+ 4
)

a2
0

.
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We can continue the last inequality using (22) as follows:

|θ ′(xn + 1)| � 1

a2
0

(|θ ′(xn−1 + 1)| + xn − xn−1)
(
v2
n + 4

)
+
vn
(
v2
n + 4

)
a4

0

� xn

a2
0

(
v2
n + 4

)2 ( |θ ′(xn−1 + 1)|
xn
(
v2
n + 4

) +
1(

v2
n + 4

) +
1

xna
2
0

)
.

We can now choose a constantC1 sufficiently large, so that by induction from the last estimate
(with the help of (2) and (3)) follows for all n the inequality

sup
x∈(a,b)

|θ ′(xn + 1)| � C1xn
(
v2
n + 4

)2
. (23)

From (22) and (23) follows then

|θ ′(xn)− xn| � |θ ′(xn−1)| + xn−1 � C1xn−1
(
v2
n−1 + 4

)2
+ xn−1 � 2C1xn−1v

4
n−1

where we probably have to enlarge C1. Then the claim of the present lemma for the first
derivatives follows with C0 = 2C1.

To prove the assertion for the higher derivatives, we have to differentiate (21) sufficiently
many times. As a result, we obtain for l � 2 the formula

θ(l)(n + 1) = θ(l)(n)

1 − V (n)

sin x sin(2θ̄ (n)) + V (n)2

sin2 x
sin2(θ̄ (n))

+
Pl(n)

sin4l x
(

1 − V (n)

sin x sin(2θ̄ (n)) + V (n)2

sin2 x
sin2(θ̄(n))

)l (24)

where Pl(n) is a real polynomial of the form

Pl(n) =
∑
β∈J

cβ(sin x)aβ (cos x)bβ (sin(θ̄(n)))sβ (cos(θ̄ (n)))rβ V (n)wβ
l−1∏
j=1

(θ (j)(n))uj,β

for which holds: J is a finite set of indices,wβ � 2l− 1, 0 � uj,β and
∑l−1

j=1 juj,β � l for all
β from J . (This is easy to show by induction on l.) We can estimate Pl(n) as follows:

|Pl(n)| � V (n)2l−1 sup
(u1,...,ul−1):

∑l−1
j=1 juj�l

l−1∏
j=1

|(θ (j)(n))uj |.

From formula (24) we obtain the inequality

|θ(l)(xn + 1)| � |θ(l)(xn)|
(
v2
n

a2
0

+ 4

)
+

|Pl(xn)|
(
v2
n

a2
0

+ 4
)l

a4l
0

. (25)

We will now use the induction on l. So let us assume that

sup
x∈[a,b]

|θ(j)(xn + 1)| � Cjx
j
n

(
v2
n + 4

)2j
for each j � l − 1. Then we can modify the estimate for Pl as follows:

sup
x∈[a,b]

|Pl(xn)| � v2l−1
n sup∑l−1

j=1 juj�l

(
xn + C0v

4
n−1xn−1

)u1

 l−1∏
j=2

Cj

(v4
n−1xn−1

) l−1∑
j=2

juj

� v2l−1
n xln

(here we have used (22), the definition of Pl and (3)).
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Thus we can obtain from (25) using the last estimate on Pl and (22) the estimate

|θ(l)(xn + 1)| � |θ(l)(xn−1 + 1)|
(
v2
n

a2
0

+ 4

)
+ Cxlnv

2l−1
n

(
v2
n

a2
0

+ 4
)l

a4l
0

= xln
(
v2
n + 4

)2l
a2

0

(
|θ(l)(xn−1 + 1)|(
v2
n + 4

)2l−1
xln

+
C

a6l−2
0

v2l−1
n(

v2
n + 4

)l
)
.

We can now choose a constant Cl sufficiently large, so that by induction on n from the last
estimate follows for all n the inequality

sup
x∈(a,b)

|θ ′(xn + 1)| � Clx
l
n

(
v2
n + 4

)2l
. (26)

(We have used here again condition (3).)
Thus the induction on l is also complete and the estimates on the higher derivatives

are proved. �

Remark. We can weaken the conditions of the previous lemma. Actually, it suffices to assume
the relations

lim
n→∞

1

xn
= lim

n→∞
1

vn
= lim

n→∞
xnv

2
n

xn+1
= 0. (27)

Corollary 4.2. Under the same assumptions as in the previous lemma holds

lim
j→∞

θ̄ ′(xj )
xj

= 1.

Remark. Let ε > 0 be chosen. Then we can assume without loss of generality that
(1 − ε)xj < θ̄ ′

j < (1 + ε)xj holds not only for sufficiently large j (which is the claim of the
last corollary), but also for all j . For this we have to take in theorem 2.2

R−2(xj+j0, k) = R−2(xj0 , k)

j−1∏
r=j0+1

(
1 − vr sin(2θ̄ r )

sin x
+
v2
r sin2(θ̄r )

sin2 x

)−1

instead of (10), define h there by h(x) = 2
π
R−2(xj0 , x)f (2 cos x) sin2 x and then renumerate

correspondingly xj , v′
j and θ̄ ′

j .

Corollary 4.3. Using (3) and (22) we can rewrite the statement of lemma 4.1 as follows:

sup
x∈[a,b]

|θ̄ (l)(xn+1)| � Clx
(2−δ)l
δ

n n = 1, 2, . . . l = 2, 3, . . .

sup
x∈(a,b)

∣∣∣∣dθ̄ (xn)dx
− xn

∣∣∣∣ � C0x
2−δ
δ

n−1 n = 2, 3, . . .

where we probably have to enlarge Cl, l � 2.

5. Non-resonant terms

We now describe briefly our general strategy for estimating (9). We consider separate integrals
from this sum, that is the integrals of the form∫ b

a

h(x)Cαj (x) exp

(
i 2

(
−t cos x +

j∑
r=1

(αr θ̄ r )

))
dx. (28)
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By corollary 4.2, the derivative of the phase is roughly equal to

2
j∑
r=1

αrxr + 2t sin x.

Because of condition (3) (which implies the rapid growth of xj ) the last expression is, in most
cases, of the order of 2αjxj + 2t sin x. So, we can conclude that if |t| is either much larger
or much smaller than xj and if the αr with r < j are not too large in the absolute value

(otherwise
∣∣∣∑j

r=1 αrxr

∣∣∣ could be in some cases much smaller than |αj |xj ), the exponential

oscillates heavily and the corresponding contribution to (9) is small in the absolute value (we
call those terms ‘non-resonant’, exact definition will follow). So we have to cut off the series
over the αr . If |t| is of the order of xj , a different treatment is necessary (it occurs in the next
section). In this case we will also cut off the series over the αr .

For the exact determination of this cutting off we introduce the values γ jr :

γ jr =


4−1xjx

δ−2
δ

j−1 j > r j > m(t) + 1
|t|υ0 r = j = m(t) + 1(

2−1|t|x
δ−2
δ

j−1

)ρ0

r � m(t) j = m(t) + 1

4−1|t|a0x
δ−2
δ

j r � m(t) j = m(t).


The values ρ0 and υ0 are not defined for the moment, but we assume 0 < ρ0 < 1 and
0 < υ0 < 1.

We use the notation ‘non-resonant’ for the terms (28) of three types:

(a) for the terms with j > m(t) + 1 and with |αr | � γ
j
r for all r < j ,

(b) for the terms with j = m(t) and with |αr | � γ m(t)r for all r � m(t),
(c) for the terms and with j = m(t) + 1 and with |αr | � γ m(t)+1

r for all r � m(t) + 1, for
which holds

inf
x∈(a,b)

|t sin(x) +
j∑
r=1

αrxr | � max

( |t|a0

2
,
|αj |xj

2

)
. (29)

We denote the sets of corresponding α in all three cases with A1,j .
For the terms (28) with j = m(t) + 1 and with |αr | � γ m(t)+1

r for all r � m(t) + 1, for
which (29) does not hold, we use the notation ‘resonant’. We denote the set of corresponding
α with A2,m(t)+1.

It is easy to see that we have not yet considered all α. The rest terms, which are not
contained in non-resonant or resonant terms, have the following property:

∣∣αr0 ∣∣ > γ
j
r0 for

some r0. Therefore we refer to these terms also as terms ‘with large max |αr |’. We denote the
sets of corresponding α with A3,j . (We note that the definition of the sets A1,j , A2,j and A3,j

depends, in the cases j = m(t) and j = m(t) + 1, on the value of t.)
We devote the rest of this section to the study of non-resonant terms. The discussion

of the resonant terms follows in the next section and the consideration of rest terms occurs
in section 7.

Let us start with the non-resonant case (a), so we consider terms (28) with j > m(t) + 1
and αr � γ

j
r for r = 1, . . . , j − 1. Abbreviating we obtain

Kα
j = 2

(
−t cos x +

j∑
r=1

αr θ̄ r

)
.
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Using corollary 4.2, we then see that if ε > 0 is chosen sufficiently small, for sufficiently large
|t| (note that this also ensures that j is large) holds

inf
x∈(a,b)

∣∣∣(Kα
j

)′∣∣∣ � |αj |(1 − ε)xj − |t| − (1 + ε)
j−1∑
r=1

|αr |xr

� (1 − ε)|αj |xj − xj

2
− 1 + ε

4

xj

xj−1

j−1∑
r=1

xr � |αj |xj
4

. (30)

In order to obtain good estimates, we must now integrate by parts sufficiently many times. To
do this, we introduce the differential expression

L = −i(
Kα
j

)′ d

dx
.

Note that L
(
eiKα

j

) = eiKα
j . Therefore, we can manipulate integrals (28) as follows:∫ b

a

hCαj eiKα
j dx =

∫ b

a

hCαj
(
Lm eiKα

j

)
dx =

∫ b

a

eiKα
j

[
(L∗)m

(
hCαj

)]
dx.

Here,m ∈ N is still to be chosen and

L∗ = d

dx

i(
Kα
j

)′
(x)

is the transpose of L. There are no boundary terms because the support of h lies in [a, b]. Thus
we obtain the estimate∣∣∣∣∫ b

a

h(x)Cαj (x) eiKα
j dx

∣∣∣∣ � π max
x∈(a,b)

∣∣(L∗)m
(
h(x)Cαj (x)

)∣∣ . (31)

So, our next task is to control (L∗)m
(
hCαj

)
.

Lemma 5.1. For each positive integer m there exists a constant B̃m, such that holds the
inequality

sup
x∈(a,b)

∣∣(L∗)m
(
h(x)Cαj (x)

)∣∣ � B̃m sup
m � l � 2m
x ∈ (a, b)

sup
(κ, ζ1, . . . , ζl−1) ∈ (Z+)

l :
κ � m,∑l−1

k=1(k + 1)ζk � l − κ

×

∣∣∣∣∣∣∣
(
Cαj (x)

)(κ) ∏l−1
k=1

((
Kα
j (x)

)(k+1)
)ζk

((
Kα
j (x)

)′)l
∣∣∣∣∣∣∣ .

Proof. For each m there exist constants Cm,l(κ,ζ ), independent of j , x and α (some of them can
be equal to zero), such that

(L∗)m
(
hCαj

) =
2m∑
l=m

∑
(κ,ζ )∈Il

C
m,l
(κ,ζ )

(
hCαj

)(κ)∏l−1
k=1

((
Kα
j

)(k+1)
)ζk

((
Kα
j

)′)l (32)

where Il is defined by Il = {(κ, ζ ) ∈ {0, . . . , l} × Z
l−1
+ : κ +

∑l−1
k=1(k + 1)ζk � l}. Formula

(32) is, in the case m = 1, directly obtained by derivation. (We have in this case

I1 = {(0), (1)} I2 = {(0, 0), (1, 0), (2, 0), (0, 1)}
C

1,1
(1) = i = −C1,2

(0,1) and else C1,l
(κ,ζ ) are equal to zero.)
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For arbitrarym > 1, (32) is easily proved by induction argument, using

L∗


(
hCαj

)(κ)∏l−1
k=1

((
Kα
j

)(k+1)
)ζk

((
Kα
j

)′)l
 =

i
(
hCαj

)(κ+1)∏l−1
k=1

((
Kα
j

)(k+1)
)ζk

((
Kα
j

)′)l+1

+ i
(
hCαj

)
(κ)

l−1∑
k0=1

ζk0

((
Kα
j

)(k0+1)
)ζk0 −1 (

Kα
j

)(k0+2)∏
k �=k0

((
Kα
j

)(k+1)
)ζk

((
Kα
j

)′)l+1

−
i(l + 1)

(
hCαj

)(κ)(
Kα
j

)′′∏l−1
k=1

((
Kα
j

)(k+1)
)ζk

((
Kα
j

)′)l+2 .

The sets Il are evidently finite and, moreover, |Il | (the cardinality of Il) depends only on l.
Then, taking in account that h lies in C∞

0 (−2, 2), the present lemma follows from (32). �

To bound the expressions
∏l−1
k=1

((
Kα
j (x)

)(k+1))ζk , we use corollary 4.3 which implies that∣∣∣∣∣
l−1∏
k=1

((
Kα
j

)(k+1)
)ζk ∣∣∣∣∣ �

l−1∏
k=1

(
|t| +

j∑
r=1

|αr |Cξkx
(k+1)(2−δ)

δ

r−1

)ζk
. (33)

From the last inequality and inequality (30) follows the estimate∣∣∣∣∣∣∣
∏l−1
k=1

((
Kα
j

)(k+1)
)ζk

((
Kα
j

)′)l
∣∣∣∣∣∣∣ �

4l

(|αj |xj )ν
l−1∏
k=1

 |t| +
∑j

r=1 |αr |Ck+1x
(k+1)(2−δ)

δ

r−1

(|αj |xj )k+1

ζk (34)

with ν = l −∑l−1
k=1(k + 1)ζk. We have now to consider the separate factors from this product.

So let ξ be any integer �2. Then we use |t| � xj (which follows from j > m(t) + 1) and (3)
to obtain the estimates

|t| +
∑j

r=1 |αr |Cξx
ξ(2−δ)
δ

r−1

(|αj |xj )ξ �
|t| + xjx

δ−2
δ

j−1

∑j−1
r=1

(
Cξx

ξ(2−δ)
δ

r−1

)
+ |αj |Cξx

ξ(2−δ)
δ

j−1

(|αj |xj )ξ

� |t|
x
ξ

j

+ Cξx
(δ−2)
δ

j−1 x
1−ξ
j

j−1∑
r=1

x
ξ(2−δ)
δ

r−1 + Cξ
x
ξ(2−δ)
δ

j−1

x
ξ

j

�
x
(ξ−1)(2−δ)

δ

j−1

x
ξ−1
j

.

From the last estimate and (34) it follows that there exists a constantGl such that

sup
x∈(a,b)

∣∣∣∣∣∣∣
∏l−1
k=1

((
Kα
j

)(k+1)
)ζk

((
Kα
j

)′)l
∣∣∣∣∣∣∣ �

Gl

xνj

l−1∏
k=1

x k(2−δ)
δ

j−1

xkj

ζk = Gl

xνj

x 2−δ
δ

j−1

xj


l−1∑
k=1

kζk

.

We continue this with the help of the estimates

ν +
l−1∑
k=1

kζk = l −
l−1∑
k=1

ζk � l − 1

2

l−1∑
k=1

(k + 1)ζk � l + κ

2

to obtain the inequality

sup
x ∈ (a, b)∑l−1

k=1(k + 1)ζk � l − κ

∣∣∣∣∣∣∣
∏l−1
k=1

((
Kα
j

)(k+1)
)ζk

((
Kα
j

)′)l
∣∣∣∣∣∣∣ � Gl

x
(2−δ)l
δ

j−1

x
l+κ
2
j

. (35)
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Proposition 5.2. Let the sequences (vn) and (xn) obey (3). Let δ be arbitrary from
(

1
2 , 1
)
.

Then there exist for any positive integer n a constant Bn and t0 from R, such that for |t| > t0
and j > m(t) + 1 holds the inequality∑

α∈A1,j

∣∣∣∣∫ b

a

h(x)Cαj (x) eiKα
j (x) dx

∣∣∣∣ � Bnx
−n
j .

Proof. Let n be fixed. Using (31), (35) and lemma 5.1, we obtain the estimate∣∣∣∣∫ b

a

h(x)Cαj eiKα
j dx

∣∣∣∣ � G̃m sup
0 � κ � m

m � l � 2m
x ∈ (a, b)

∣∣∣(Cαj (x))(κ)∣∣∣ x
(2−δ)l
δ

j−1

x
l+κ
2
j

(36)

with G̃m = πB̃m maxm�l�2m Gl . We have now to use lemma 3.1. By Taylor expansion we
obtain

√
p0,r = 4

√
v2
r +4a2

0
v2
r

= 4

√
1 + 4a2

0
v2
r

= 1 +
a2

0

v2
r

+ o

(
1

v3
r

)
ln(p0,r ) = ln

(√
1 + 4a2

0
v2
r

)
= 2a2

0

v2
r

+ o

(
1

v3
r

)
.

From these expansions, from lemma 3.1 (formula (13)) and from condition (3) follows for
each ε > 0: ∑

α∈Zj

sup
x∈(a,b)

∣∣∣(Cαj (x))(κ)∣∣∣ � v2κ+2+2ε
j = x

(1−δ)(κ+1+ε)
δ

j . (37)

From this estimate and from (36) we conclude that there exists for each m a constant Km,
such that ∑

α∈A1,j

∣∣∣∣∫ b

a

h(x)Cαj (x) e2iKα
j (x) dx

∣∣∣∣ � Km sup
0 � κ � m

m � l � 2m

x
(2−δ)l

2δ
j−1

x
l+κ
2 − (1−δ)(κ+1+ε)

δ

j

. (38)

From δ > 1
2 follows (1−δ)

δ
< 1 − ε̃ with some ε̃ > 0 and we can choose m so that holds(

1 + 2 1+ε
m

)
1−δ
δ
< 1 − ε̃. Then we have for all κ � l

2

(
�m

2

)
the relation

l + κ

2
− (1 − δ)(κ + 1 + ε)

δ
= l

2
+
κ

2

(
1 −

(
1 +

1 + ε

κ

)
2(1 − δ)

δ

)
>
l + 2κε̃ − κ

2
� κε̃.

For all κ with κ < l
2 holds

l + κ

2
− (1 − δ)(κ + 1 + ε)

δ
� l + κ

2
− κ − 1 − ε = l − κ

2
− 1 − ε >

l

4
− 1 − ε.

Thus we can continue (38) as follows:

∑
α∈A1,j

∣∣∣∣∫ b

a

h(x)Cαj (x) e2iKα
j (x) dx

∣∣∣∣ � Km
x
(2−δ)m

δ

j−1

x
min{ mε̃2 , m4 −1−ε}
j

.

We have now only to use condition (3) to obtain for large j the inequality x
(2−δ)m
δ

j−1 � xj .
Then the present proposition follows with sufficiently large t0 (which ensures that all j
under consideration are also large) and with Bn = Km, where m is chosen so that holds
min

{
mε̃
2 ,

m
4 − 1 − ε

}
> n + 1. �
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The non-resonant cases (b) and (c) can be treated similarly. We will thus keep in these
cases the discussion brief. First we consider case (b). It holds j = m(t) and αr � γ

j
r for

r = 1, . . . , j . Instead of (30) we have with sufficiently small ε > 0

inf
x∈(a,b)

∣∣∣(Kα
j

)′∣∣∣ � |t| inf
x∈(a,b)

sin(x)− (1 + ε)
j∑
r=1

|αr |xr � |t|a0 − (1 + ε)
j∑
r=1

|t|a0

4xj
xr

= |t|a0 − (1 + ε)|t|a0

4

(
1 + x−1

j

j−1∑
r=1

xr

)
� |t|a0

2
. (39)

Lemma 5.1 holds also in this case without any change. We can also use inequality (33), which
is also valid. Instead of (34) we have

sup
x∈(a,b)

∣∣∣∣∣∣∣
∏l−1
k=1

((
Kα
j

)(ξk))ζk((
Kα
j

)′)l
∣∣∣∣∣∣∣ �

2l

(|t|a0)ν

l−1∏
k=1

 |t| +
∑j

r=1 |αr |Cξkx
(k+1)(2−δ)

δ

r−1

(|t|a0)k+1

ζk . (40)

So we need to consider the separate factors from this product. We obtain for any ξ � 2 the
following sequence of estimates:

|t| +
∑j

r=1 |αr |Cξkx
ξ(2−δ)
δ

r−1

(|t|a0)ξ
�

|t| +
∑j

r=1 |t|a0x
δ−2
δ

j Cξ x
ξ(2−δ)
δ

r−1

|t|ξ

� |t|1−ξ + Cξa0

x 2−δ
δ

j

|t|

ξ−1 (
1

xj

)ξ 2−δ
δ

j∑
r=1

x
ξ(2−δ)
δ

r−1 �

x 2−δ
δ

j

|t|

ξ−1

. (41)

Thus we obtain instead of (35) the following inequality:

sup
x ∈ (a, b)∑l

k=1(k + 1)ζk � l − κ

∣∣∣∣∣∣∣
∏l−1
k=1

((
Kα
j

)(k+1)
)ζk

((
Kα
j

)′)l
∣∣∣∣∣∣∣ � Gl

x
(2−δ)l
δ

j

|t| l+κ2
� Gl

x
(2−δ)l
δ

j

|t| l2
. (42)

(These constantsGl are possibly different fromGl of (35).)

Proposition 5.3. Let the sequences (vn) and (xn) obey (3). Let δ be arbitrary from (0, 1).
Then there exist for any positive integer n a constant Bn and t0 > 0, so that for |t| > t0 and
for j = m(t) holds the inequality∑

α∈A1,j

∣∣∣∣∫ b

a

h(x)Cαj (x) eiKα
j (x) dx

∣∣∣∣ � Bn|t|−n.

Proof. Let n be fixed. Using (31), (42) and lemma 5.1 we obtain in this case the following
estimate (compare with the proof of proposition 5.2):∣∣∣∣∫ b

a

h(x)Cαj eiKα
j dx

∣∣∣∣ � sup
0 � κ � m

x ∈ (a, b)

∣∣∣(Cαj (x))(κ)∣∣∣
x 2(2−δ)

δ

j

|t|


m
2

. (43)

Estimate (37) from the proof of proposition 5.2 remains valid in this case also. From this
estimate and from (43) we conclude that there exists for each m a constant Km, so that holds∑

α∈A1,j

∣∣∣∣∫ b

a

h(x)Cαj (x) e2iKα
j (x) dx

∣∣∣∣ � Km
x
(2−δ)m+(1−δ)(m+1+ε)

δ

j

|t| m2 .

Then the present proposition follows from (3) with Bn = K2n+1 and t0 sufficiently large. �
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Now we come to case (c). We denote min
x∈[a,b]

∣∣t sin(x) +
∑j

r=1 αrxr
∣∣ with Dα

t . Let x0 be

the point where this minimum is achieved. Then we have Dα
t = ∣∣t sin(x0) +

∑j

r=1 αrxr
∣∣.

We use (3), (29) and corollary 4.3 to obtain for large j (= m(t) + 1) the following sequence
of inequalities:

inf
x∈(a,b)

∣∣∣(Kα
j (x)

)′∣∣∣ � ∣∣∣∣∣t sin(x0) +
j∑
r=1

αrxr

∣∣∣∣∣−
j∑
r=1

|αr ||θ̄ ′
r − xr |

�
∣∣∣∣∣t sin(x0) +

j∑
r=1

αrxr

∣∣∣∣∣−C0|αj |x
2−δ
δ

j−1 −
j−1∑
r=1

(
xjx

δ−2
δ

j−1

)ρ0

C0x
2−δ
δ

r−1

� Dα
t

1 − 2C0

x 2−δ
δ

j−1

xj
+

x 2−δ
δ

j−1

xj

1−ρ0 ∑j−1
r=1

(
x

2−δ
δ

r−1

)
x

2−δ
δ

j−1


 � Dα

t

2
� |αj |xj

4
.

So, instead of (34) from the case (a) and (40) from the case (b) we have in the case (c) the
estimate

sup
x∈(a,b)

∣∣∣∣∣∣∣
∏l−1
k=1

((
Kα
j

)(ξk))ζk((
Kα
j

)′)l
∣∣∣∣∣∣∣ �

2l

(Dα
t )
ν

l−1∏
k=1

 |t| +
∑j

r=1 |αr |Cξkx
(k+1)(2−δ)

δ

r−1

(Dα
t )
k+1

ζk . (44)

We consider again the separate factors. We use the inequality

|t| = |t sin x0|
sin x0

� Dα
t +
∑j

r=1 |αr |xr
sin x0

to obtain for each integer ξ � 2 the following estimates:

|t| +
∑j

r=1 |αr |Cξx
ξ(2−δ)
δ

r−1∣∣∣t sin(x0) +
∑j

r=1 αrxr

∣∣∣ξ

�
Dα
t +
∑j

r=1 |αr |xr + sin(x0)

(
|αj |Cξx

ξ(2−δ)
δ

j−1 + Cξ
xj
xj−1

∑j−1
r=1 x

ξ(2−δ)
δ

r−1

)
sin(x0) (D

α
t )
ξ

�
(

1

Dα
t

)ξ−1

+
|αj |

(
x
ξ(2−δ)
δ

j−1 + xj

)
(Dα

t )
ξ−1 |αj |xj

�
x
(ξ−1)(2−δ)

δ

j−1

(Dα
t )
ξ−1 �

x (2−δ)
δ

j−1

t

ξ−1

. (45)

We obtain from this as in the previous case

sup
x ∈ (a, b)∑l

k=1(k + 1)ζk � l

∣∣∣∣∣∣∣
∏l−1
k=1

((
Kα
j

)(k+1)
)ζk

((
Kα
j

)′)l
∣∣∣∣∣∣∣ � Gl

x 2(2−δ)
δ

j−1

|t|


l
2

. (46)

(These constantsGl are possibly different fromGl of (35) and (42).)

Proposition 5.4. Let the sequences (vn) and (xn) obey (3). Let δ be arbitrary from (0, 1).
Then there exist for any positive integer n a constant Bn and t0 > 0, so that for |t| > t0 and
for j = m(t) + 1 holds the inequality∑

α∈A1,j

∣∣∣∣∫ b

a

h(x)Cαj (x) eiKα
j (x) dx

∣∣∣∣ � Bn|t|−n.
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Proof. We have only to repeat the proof of proposition 5.3 with (42) replaced by (46). �

6. Resonant terms

We consider in this section the resonant terms, that is terms (28) with j = m(t) + 1, αr � γ
j
r

for 1 � r � j , for which holds

min
x∈[a,b]

∣∣∣∣∣t sin(x) +
j∑
r=1

αrxr

∣∣∣∣∣ < max{|αjxj |, |t|a0}
2

. (47)

For the sake of brevity, we write in this section j form(t)+ 1. Abbreviate g(x) = 2
(
t sin(x)+∑j

r=1 αrxr
)
. The point x = π/2 (which corresponds to the energyE = 0) plays a special role

now because the derivative of g is zero there. Therefore, we assume first that π/2 /∈ [a, b]
(the opposite case we will consider further).

The terms under consideration have possibly small infx∈(a,b)
∣∣(Kα

j

)′∣∣, so we cannot proceed
in this case as in the previous section. To avoid this difficulty we represent Kα

j as follows:
Kα
j = η1 + η2, where

η1 = 2

(
−t cos(x) + x

j∑
r=1

αrxr

)
η2 = 2

j∑
r=1

αr(θ̄ r − xxr).

Let ε1 be any positive number. The function g(x) (which is the derivative of η1) is monotone
on (a, b), therefore there exists only one point of minimum of |g(x)|. We denote this point
with x0 and interval (x0 − ε1, x0 + ε1)

⋂
(a, b) with I1. Then we have for all x /∈ I1

2

∣∣∣∣∣t sin(x) +
j∑
r=1

αrxr

∣∣∣∣∣ � |t||sin x − sin x0| � M|t|ε1 (48)

with M = inf(|cos x|, x ∈ (a, b)) > 0.
We split integral (28) and then integrate by parts to obtain∫ b

a

hCαj eiKα
j dx =

∫
I1

hCαj eiKα
j dx +

∫
(a,b)\I1

hCαj eiη2

ig
deiη1

=
∫
I1

hCαj eiKα
j dx −

(
hCαj eiKα

j

ig

)x0+ε1

x0−ε1

−
∫
(a,b)\I1

h′Cαj eiKα
j

ig
dx

−
∫
(a,b)\I1

h d
dx

(
Cαj
)

eiKα
j

ig
dx +

∫
(a,b)\I1

2hCαj (t cos(x)) eiKα
j

ig2
dx

−
∫
(a,b)\I1

2h(x)Cαj (x)
∑j

r=1(αr(θ̄
′
r (x)− xr)) eiKα

j

g
dx. (49)

We leave the first integral for the moment and estimate other summands. The only summand,
which we cannot estimate immediately, is the last integral. So we consider the expressions∣∣g−1

∑j

r=1 αr(θ̄
′
r (x)− xr)

∣∣. From corollary 4.3 we have the inequality∣∣∣∣∣
j∑
r=1

αr(θ̄
′
r (x)− xr)

∣∣∣∣∣ � C0

((
xjx

δ−2
δ

j−1

)ρ0
j−1∑
r=1

x
2−δ
δ

r−1 + |t|υ0x
2−δ
δ

j−1

)
.
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Then with (48) and with the definition of g(x) follows the estimate

sup
x∈(a,b)\I1

∣∣∣∣∣
∑j

r=1 αr(θ̄
′
r (x)− xr)

ig

∣∣∣∣∣ �
C0

(
|t|υ0x

2−δ
δ

j−1 + xρ0
j x

(δ−2)ρ0
δ

j−1

∑j−1
r=1 x

2−δ
δ

r−1

)
Mε1|t|

�
x

2−δ
δ

j−1

Mε1|t|1−υ0
+

1

Mε1|t|1−ρ0
.

(The ‘hidden’ constant in the last estimate is independent of M and ε1.) So we use (49) to
obtain the estimate∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � ∣∣∣∣∫
I1

hCαj eiKα
j dx

∣∣∣∣ +
C(b − a)

Mε1|t| sup
x ∈ (a, b)
δ = 0, 1

∣∣∣(Cαj )(δ)∣∣∣
+

 C

M|t|ε1
+
C(b − a)

Mε1

|t|−1 +
1

Mε1|t| +
x

2−δ
δ

j−1

|t|1−υ0
+

1

|t|1−ρ0

 sup
x∈(a,b)

∣∣Cαj ∣∣ .
Let (εk)∞k=1 be any monotonically decreasing sequence of positive numbers. (The first term of
this sequence, that is ε1, was already introduced). We define now inductively the sequence of
intervals by Ik = (x0 − εk, x0 + εk)

⋂
Ik−1. Formula (49) holds with I1 replaced by Ik , (a, b)

replaced by Ik−1 and with the additional boundary term(
hCαj eiKα

j

ig

)x0+εk−1

x0−εk−1

on the right-hand side. We can then repeat the previous procedure to obtain the following
estimate (the contribution corresponding to the additional boundary term is small in comparison
with the other terms and can be therefore omitted):∣∣∣∣∫
Ik−1

hCαj eiKα
j dx

∣∣∣∣ � ∣∣∣∣∫
Ik

hCαj eiKα
j dx

∣∣∣∣ +
Cεk−1

Mεk|t| sup
x ∈ (a, b)
δ = 0, 1

∣∣∣(Cαj )(δ)∣∣∣
+

 C

M|t|εk +
Cεk−1

Mεk

|t|−1 +
1

Mεk|t| +
x

2−δ
δ

j−1

|t|1−υ0
+

1

|t|1−ρ0

 sup
x∈(a,b)

∣∣Cαj ∣∣ .
For fixed m (which we have to specify further) follows from the last two estimates the

inequality∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � C

εm sup
x∈(a,b)

∣∣Cαj ∣∣ +
m−1∑
k=1

εk−1

M|t|εk sup
x ∈ (a, b)
δ = 0, 1

∣∣∣(Cαj )(δ)∣∣∣


+
m−1∑
k=1

C

Mεk

2Mεk + εk−1

Mεk|t| +
εk−1x

2−δ
δ

j−1

|t|1−υ0
+
εk−1

|t|1−ρ0

 sup
x∈(a,b)

∣∣Cαj ∣∣ . (50)

(We note again that C is independent of M and εk.)

Proposition 6.1. Suppose π/2 /∈ [a, b]. Then for each σ > 0 there exist t0 > 0 and a constant
C, so that for |t| > t0 holds∑
α∈A2,m(t)+1

∣∣∣∣∫ b

a

hCαm(t)+1 eiKα
m(t)+1 dx

∣∣∣∣ � C|t|− min{ 1
2 ,

2δ−1
δ
,1−υ0,1−ρ0}+ (1−δ)

δ
+σ .
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Proof. We set εk = |t|−kµ with µ > 0 to obtain from (50), using (37), for sufficiently large |t|
the following inequality:∑
α∈A2,j

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � C

(
|t|−mµx

(1−δ)(1+ε)
δ

j +
m

M|t|1−µ x
(1−δ)(2+ε)

δ

j

)

+C

m−1∑
k=1

(
2

M2|t|1−(k+1)µ

)
+

mx
2−δ
δ

j−1

M|t|1−υ0−µ +
m|t|ρ0

M|t|1−µ

 x (1−δ)(1+ε)
δ

j .

We can continue the last estimate as follows:∑
α∈A2,j

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � |t|−mµ+ (1−δ)(1+ε)
δ + |t|µ+ (1−δ)(2+ε)

δ
−1 + |t|mµ−1+ (1−δ)(1+ε)

δ

+ |t|υ0+µ+ε+ (1−δ)(1+ε)
δ

−1 + |t|ρ0+µ+ (1−δ)(1+ε)
δ

−1.

Then the proposition follows with ε < δσ
2 and µ = 1

2m with m sufficiently large, so that holds
µ < σ

2 . �

Now consider the case π
2 ∈ [a, b]. We have to exclude this critical point π2 . For this we

denote the interval
(
π
2 − γ, π2 + γ

)
with Jγ (γ from

(
0, π2

)
is still to be chosen) and use the

easy estimate ∣∣∣∣∫ b

a

hCαj eiKα
j

∣∣∣∣ � Cγ sup
x∈(a,b)

∣∣Cαj ∣∣ +

∣∣∣∣∣
∫

[a,b]\Jγ
hCαj eiKα

j

∣∣∣∣∣ .
The set [a, b]\Jγ is the union of at most two closed intervals, which do not contain the
point π2 . We can therefore use for these intervals the previous results. We have only to note
that the following inequality holds:

inf
x∈[a,b]\Jγ

|cos x| � cos
(π

2
− γ

)
= sin γ.

So we obtain instead of (50) the estimate

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � C(γ + εm) sup
x∈(a,b)

∣∣Cαj ∣∣ + C

m−1∑
k=1

εk−1

|t|εk sin γ
sup

x ∈ (a, b)
δ = 0, 1

∣∣∣(Cαj )(δ)∣∣∣


+
m−1∑
k=1

C

εk sin γ

2εk sin γ + εk−1

εk|t| sin γ
+
εk−1x

2−δ
δ

j−1

|t|1−υ0
+
εk−1

|t|1−ρ0

 sup
x∈(a,b)

∣∣Cαj ∣∣ . (51)

Proposition 6.2. Suppose j = m(t) + 1. Let [a, b] be an arbitrary closed subinterval of
(0, π). Then for each ε > 0, � > 0 there exist t0 > 0 and a constant C, so that for |t| > t0
holds∑
α∈A2,j

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � C|t|− min{�, 1−2�
2 , 2δ−1

δ
−�,1−υ0−�,1−ρ0−� }+ (1−δ)

δ
+ε.
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Proof. For small γ > 0 holds the inequality sin γ � γ

2 . With γ = |t|−� we have then from
(51) the estimate∑
α∈A2,j

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � ((|t|−� + |t|−mµ)x
(1−δ)(1+ε)

δ

j +
m

|t|1−µ−� x
(1−δ)(2+ε)

δ

j

)

+

m−1∑
k=1

(
3

|t|1−(k+1)µ−2�

)
+

mx
2−δ
δ

j−1

|t|1−υ0−µ−� +
m|t|ρ0

|t|1−µ−�

 x (1−δ)(1+ε)
δ

j .

Using j = m(t) + 1 and (12), we continue this as follows:∑
α∈A2,j

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � (|t|−� + |t|−mµ + |t|µ+ 1−δ
δ

+�−1
)

|t| (1−δ)(1+ε)
δ

+ (|t|mµ−1+2� + |t|υ0+µ+�+ε−1 + |t|ρ0+µ+�−1)|t| (1−δ)(1+ε)
δ .

Then the proposition follows with µ = 1−2�
2m and m sufficiently large. �

7. The terms with large max |αr|
The heading of this section refers to those terms from (28), which are not considered in the
previous two sections, that is to the terms, which correspond to such α from Z

j , for which
there exists r0, such that

∣∣αr0 ∣∣ > γ
j
r0 .

We use in this section an easy estimate∣∣∣∣∫ b

a

h(x)Cαj (x) eiKα
j dx

∣∣∣∣ � C

j∏
r=1

p
−|αr |
0,r . (52)

(p0,r is defined as in section 3, that is by
√
v2
r +4a2

0

vr
.) In the case j > m(t) + 1 we have then the

estimates∣∣∣∣∣∣
∑
α∈A3,j

∫ b

a

h(x)Cαj (x) eiKα
j dx

∣∣∣∣∣∣ �
 j−1∑
r0=1

∑
{α∈Zj‖αr0 |�γ jr0 }

C

j∏
r=1

p
−|αr |
0,r


� C(j − 1)

(
p

− min
r=1,...,j−1

(γ
j
r )

0,j

j∏
r=1

(
+∞∑

k=−∞
p−k

0,r

))

� jC

(
p

− min
r=1,...,j−1

(γ
j
r )

0,j

j∏
r=1

(
p0,r + 1

p0,r − 1

))
. (53)

In cases j = m(t) and j = m(t) + 1 the following estimate is similarly obtained:∣∣∣∣∣∣
∑
α∈A3,j

∫ b

a

h(x)Cαj (x) eiKα
j dx

∣∣∣∣∣∣ � jC

(
p

− min
r=1,...,j

(γ
j
r )

0,j

j∏
r=1

(
p0,r + 1

p0,r − 1

))
. (54)

We consider for the moment a little more general situation.

Lemma 7.1. Let (µj ) be an arbitrary sequence of positive real numbers. Then there exists a
constant C, such that the following estimate holds:

j

(
p

−µj
0,j

j∏
r=1

(
p0,r + 1

p0,r − 1

))
� C e

−µj 2a2
0

v2
j v3

j .
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Proof. We have from limj→+∞ vj = +∞ (which is the consequence of (3)) the relation

limj→∞
(

1 + 4a2
0

v2
j

) v2
j

4a2
0 = e. Therefore, there exists a constant C̃1, such that holds

p
−µj
0,j =

(
vr√

v2
r + 4a2

0

)µj
=


 1

1 + 4a2
0

v2
j


v2
j

4a2
0


1
2µj

4a2
0

v2
j

� C̃1 e
− 2µj a

2
0

v2
j .

From (3) follows lim
j→∞

ja
−2j
0 v−1

j

∏j−1
r=1

(
v2
r + a2

0

) = 0. Particularly, there exists a constant C̃2,

such that

j

(
j∏
r=1

(
p0,r + 1

p0,r − 1

))
= j

(
j∏
r=1

(p0,r + 1)2

p2
0,r − 1

)
= j

 j∏
r=1

(√
v2
r + 4a2

0 + vr
)2

4a2
0


� j

(
j∏
r=1

v2
r + 4a2

0

a2
0

)
� C̃2vj

(
v2
j + 4a2

0

)
� 2C̃2v

3
j .

With C = 2C̃1C̃2we obtain the desired inequality. �

We are now able to prove the main result of the present section.

Proposition 7.2. Let ε be any positive number and δ ∈ ( 1
2 , 1
)
. Denote with G(t, δ, ρ0, υ0, ε)

the value |t|min{1−3ε,1+υ0−ε− 1
δ
,1+ρ0−2ε− 1

δ
}. Then there exists a constant C, such that holds

∞∑
j=m(t)

∑
α∈A3,j

∣∣∣∣∫ b

a

h(x)Cαj (x) eiKα
j dx

∣∣∣∣ � Ce−2a2
0G(t,δ,ρ0,υ0,ε).

Proof. For the value min
(
γ
j
r

)
we have for large j , t with (3) and (12) in the case j > m(t)+1:

min
r=1,...,j−1

(
γ jr
) = xj

(
4x

2−δ
δ

j−1

)−1
� x1−ε

j

in the case j = m(t):

min
r=1,...,j

(
γ jr
) = |t|

(
2x

2−δ
δ

j

)−1
� |t|1−ε

and in the case j = m(t) + 1:

min
r=1,...,j

(γ jr ) = min

{
|t|υ0 ,

(
2−1|t|x

δ−2
δ

j−1

)ρ0
}

� |t|min{υ0,ρ0−ε}.

Then we have from (53) and (54), using lemma 7.1 (with µj = min γ jr ) the estimates∑
α∈A3,j

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � x
3(1−δ)

2δ
j e−2a2

0x
2−ε−1/δ
j j > m(t) + 1

∑
α∈A3,j

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � x
3(1−δ)

2δ
j e−2a2

0 |t|1−εx1−1/δ
j j = m(t)

∑
α∈A3,j

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � x
3(1−δ)

2δ
j e−2a2

0 |t|min{υ0 ,ρ0−ε}x1−1/δ
j j = m(t) + 1.
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From the condition δ ∈ ( 1
2 , 1
)

follows 2 − 1/δ > 0. We can conclude then, because of rapid
growth of xj (condition (3)), that the series

∞∑
j=m(t)+2

∑
α∈A3,j

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣
is negligently small in comparison with∑

α∈A3,m(t)

∣∣∣∣∫ b

a

hCαm(t) eiKα
m(t)dx

∣∣∣∣ +
∑

α∈A3,m(t)+1

∣∣∣∣∫ b

a

hCαm(t)+1 eiKα
m(t)+1 dx

∣∣∣∣ .
We estimate the last expression using the estimates from above and (12) as follows:

m(t)+1∑
j=m(t)

∑
α∈A3,j

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � xm(t)
3(1−δ)

2δ

e2a2
0 |t|1−2ε

+
|t| 3(1−δ)

2δ

e2a2
0 |t|min{υ0 ,ρ0−ε}+1−1/δ .

We have for |t| sufficiently large the inequality |t| 3(1−δ)
2δ � e2a2

0 |t|ε , from which then the
proposition follows with (12). �

8. Proof of theorem 1.2

(i) We have now to specify the values ρ0 and υ0. The smallest values, for which proposition 7.2
gives us the desired estimate, are ρ0 = υ0 = 1

δ
− 1 + σ with σ > 0 (for all smaller values

holds G(t, δ, ρ0, υ0, ε) � 0, which stays in contradiction with the relation (1)). So we set
ρ0 = υ0 = 1

δ
−1+σ with σ > 0 still to be specified. Then we can conclude from proposition 7.2

that the contribution of the ‘terms with large max |αr |’ in (9) can be estimated by e−tσ/2 (if
ε > 0 is chosen sufficiently small).

As for non-resonant terms, we see then from propositions 5.2, 5.3 and 5.4 that we can
estimate the sum of these terms by C|t|−m with arbitrary m (we use (3) to conclude that the
contribution of integrals

∫ b
a
hCαj eiKα

j dx for j > m(t) + 1 is smaller than the contribution of
these integrals with j = m(t) and j = m(t) + 1).

So the crucial contribution comes from the resonant terms. Proposition 6.1 implies that
the sum of these terms can be estimated by C|t|− min{ 3

2 − 1
δ
−σ,3− 2

δ
−2σ }. In the case δ > 2

3 the last

expression takes the form C|t| 1
δ
− 3

2 +σ . Thus (i) is proved.

(ii) We set again ρ0 = υ0 = 1
δ

− 1 + σ . Everything said about the non-resonant terms and
the ‘terms with large max |αr |’ remains valid in this case without a change. The crucial
contribution comes again from the resonant terms. We have now only to specify the value� .
From proposition 6.2 we have now the estimate∑

α∈A2,m(t)+1

∣∣∣∣∫ b

a

hCαm(t)+1 eiKα
m(t)+1 dx

∣∣∣∣ � C|t|− min{�, 1−2�
2 ,2− 1

δ
−�−σ }+ (1−δ)

δ
+σ .

So we have to choose � so that min
{
�, 1−2�

2 , 2 − 1
δ

−� − σ
}

takes the largest value that
is obtained (if δ > 2/3) by � = 1/4. We have then the estimate∑

α∈A2,m(t)+1

∣∣∣∣∫ b

a

hCαm(t)+1 eiKα
m(t)+1 dx

∣∣∣∣ � C|t|− 5
4 + 1

δ
+σ

from which statement (ii) follows.

(iii) We consider the case |t| /∈ R and prove that in this case (for sufficiently large value
of |t|) the setA2,m(t)+1 of resonant terms is empty, so the better estimate (of the order ofC|t|−m
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with arbitrary m) is possible. |t| /∈ R implies x
δ

2δ−1 +ε
j < |t| < xj+1/2 with some j . This j

must by the definition of m(t) be equal to m(t) + 1. We have now to show that for all α with
|αr | � γ m(t)+1

r holds (29). Similarly to (39) we obtain

min
x∈[a,b]

∣∣∣∣∣t sin(x) +
j∑
r=1

αrxr

∣∣∣∣∣ � |t|a0 − |αm(t)+1|xm(t)+1 −
(
|t|x

δ−2
δ

j−1

)ρ0
j−1∑
r=1

xr

� |t|a0 − |t|υ0xm(t)+1 − |t|ρ0xσm(t)+1

for large |t| and small σ > 0. We set as in (i) and (ii) ρ0 = υ0 = 1
δ

− 1 + σ . So we can
continue the previous inequality as follows:

min
x∈[a,b]

∣∣∣∣∣t sin(x) +
j∑
r=1

αrxr

∣∣∣∣∣ � |t|a0 − 2|t| 1
δ
−1+σ xm(t)+1

= |t| 1
δ
−1+σ

(
|t| 2δ−1

δ
−σ a0 − 2xm(t)+1

)
. (55)

From |t| > x
δ

2δ−1 +ε
m(t)+1 follows for sufficiently small σ the inequality |t| 2δ−1

δ
−σ > x

1+ ε
2

m(t)+1. Relation
(29) follows now from (55), using (3). Thus A2,m(t)+1 is empty and the estimate

|(f dρ)̂ (t)| � C|t|−m
holds with some C for arbitrary m. �

9. Proof of theorem 1.3

If the sequence (vn) from (2) is bounded, there exists a constant A > 1, such that for all r
holds the inequality p0,r � A, from which follows with B = 1 + 2√

A−1
the inequality

p0,r + 1

p0,r − 1
<

√
p0,r + 1

√
p0,r − 1

� B.

We have then for the derivatives of coefficients from (13) the estimate∑
α∈Zm(t)+1

sup
κ = 0, . . . , k
x ∈ (a, b)

∣∣∣(Cαm(t)+1(x)
)(κ)∣∣∣ � P̃ kB

m(t)+1 (56)

where P̃ k are possibly different from P̃ k from (13).
We can use in the case of a bounded potential the inequalities from corollary 4.3 with

δ = 1 (for the proof see [4]). We set correspondingly δ = 1 in the definition of the values γ jr .
It is easy to see that all results from section 5 remain valid for bounded potentials also,

because estimate (56) is even better than estimate (37). Therefore, the contribution of non-
resonant terms is in the case of a bounded potential also of the order of C|t|−m. So the only
changes we have to make concern estimates from sections 6 and 7.

We start with the modifications, which we have to carry out in section 7. We replace
estimates (53) and (54) by the estimate∣∣∣∣∣∣

∑
α∈A3,j

∫ b

a

h(x)Cαj (x) eiKα
j dx

∣∣∣∣∣∣ � jCA− min(γ jr )Bj .

Then the final estimate for the terms with large max |αr | reads
∞∑

j=m(t)

∑
α∈A3,j

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � CA−|t|min{υ0 ,ρ0}−2ε
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where we have used condition (4) to obtain

lim
t→±∞(m(t) + 1)Bm(t)+1A−|t|ε = 0 for all ε > 0. (57)

So we can conclude that the contribution of these terms to (9) is for any choice of υ0 ∈ (0, 1)
and ρ0 ∈ (0, 1) smaller than the contribution of non-resonant terms (we have only to set in the
last inequality ε = min{υ0, ρ0}/3).

The crucial contribution comes (as in the case of an unbounded potential) again from the
resonant terms. We start our consideration here with inequality (51) and use inequality (56)
to obtain∑
α∈A2,j

∣∣∣∣∫ b

a

hCαj eiKα
j dx

∣∣∣∣ � Bj

(
γ + εm +

m−1∑
k=1

εk−1

|t|εk sin γ

)

+
m−1∑
k=1

1

εk sin γ

2εk sin γ + εk−1

εk|t| sin γ
+
εk−1x

2−δ
δ

j−1

|t|1−υ0
+
εk−1

|t|1−ρ0

Bj
where j stays for m(t) + 1. We set εk = |t|−kµ with µ = 1−2�

2m , γ = |t|−� and υ0 = ρ0 =
τ > 0 to obtain from the last inequality the following estimate:∑

α∈A2,m(t)+1

∣∣∣∣∫ b

a

hCαm(t)+1 eiKα
m(t)+1 dx

∣∣∣∣ � (|t|−� + |t| 2�−1
2 + |t|τ+�−1

)
|t|σBm(t)+1.

We have now only to set � = 1/4 and then to choose any τ from (0, 1/4), because we have
for all ε > 0 from condition (4) the relation

sup
t∈R\[−1,1]

Bm(t)+1|t|−ε < ∞.
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